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Thermodynamics of a two-dimensional unbounded self-gravitating system

Jean-Jacques Aly1 and Je´rôme Perez1,2
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The thermodynamics of a two-dimensional self-gravitating system occupying the whole plane is considered
in the mean-field approximation. First, it is proven that, if the numberN of particles and the total energyE are
imposed as the only external constraints, then the entropy admits the least upper boundS1(N,E)52E/N
1N ln(ep2) ~in appropriate units!. Moreover, there does exist a unique state of maximum entropy, which is
characterized by a Maxwellian distribution function with a temperatureT5N/2 independent ofE. Next, it is
shown that, if the total angular momentumJ is imposed as a further constraint, the largest possible value of the
entropy does not change, and there is no admissible state of maximum entropy, but in the caseJ50. Finally,
some inequalities satisfied by a class of so-calledH functions and related generalized entropies are given.
@S1063-651X~99!02011-5#
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I. INTRODUCTION

The problem of the mean-field thermodynamics of a tw
dimensional self-gravitating system confined inside
bounded plane domainD has been considered by Katz an
Lynden-Bell@1# and more recently by Aly@2# ~paper I here-
after!. In this last paper, it was shown in particular that t
Boltzmann entropy of an isolated system constituted oN
particles and having an energyE, is bounded from above by
a numberS* (N,E) independent ofD. Moreover, it was
proven that, at least whenD is a disk, the maximum of the
entropy is reached by only one distribution function, whi
is naturally of Maxwellian type. Then the system admits
unique thermodynamically stable equilibrium state.

The main purpose of this paper is twofold. First, we wa
to extend the results quoted above to an unconfined—
occupying the whole planeR2—isolated system ofN par-
ticles having a prescribed energyE. Secondly, we want to
discuss how the equilibrium state is affected when the t
angular momentumJ is imposed as a further constraint. Fi
ing the value ofJ is certainly natural, as angular momentu
is a constant of motion for an unconfined system whose e
lution is governed by any one of the classical kinetic eq
tions (J is also conserved when the system is confined ins
a disk; in that case, the constraintJ50 was assumed in Ref
@1# and in paper I!.

The paper is organized as follows. The problems we w
to solve are given a precise mathematical formulation in S
II. The existence of an entropy maximum and that of
entropy maximizer are discussed in Secs. III and IV whenN
and E, and N, E, and J, respectively, are imposed to tak
fixed values. Finally, the bound derived in Sec. III for th
Boltzmann entropy is shown in Sec. V to imply upp
bounds for a class of so-calledH functions and related gen
eralized entropies@3,4#.

II. STATEMENT OF THE PROBLEMS

A. Assumptions and important physical quantities

We consider a two-dimensional self-gravitating syst
constituted of particles of massm occupying the whole plane
PRE 601063-651X/99/60~5!/5185~6!/$15.00
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R2. We work with dimensionless variables, the units
length, velocity, and mass being taken to be, respectivelyL0
~an arbitrarily chosen quantity!, V0ª(Gm)1/2 ~with G the
two-dimensional gravitational constant!, andM0ªm.

A state of the system is assumed to be entirely descri
by the one-particle distribution functionf (w) @unit f 0
ª(L0V0)22] defined over the phase spaceR45$w5(x,v)%,
where x and v denote the position and the velocity of
particle in a Galilean frame of originO. f (w) gives the den-
sity of particles in the phase-space, while

n~x!5E f ~x,v!dv ~1!

gives the particle density in the physical space@an integral
with respect todw ~respectively,dx, dv) is taken over the
wholeR4 ~respectively,R2)]. Without loss of generality, we
imposeO to coincide with the center of mass of the syste
i.e., we assume that

E n~x!x dx50. ~2!

f generates the mean gravitational potential~unit F0ªVO
2

5Gm)

F~x!ª2E lnux2x8u f ~w8!dw852E lnux2x8un~x8!dx8.

~3!

A choice of gauge is implicit in this relation: the potenti
created by a particle is taken to vanish at a unit distance
course,F satisfies Poisson equation

¹2F54pn54pE f ~x,v!dv. ~4!

From f, we can compute the following global quantities
~1! Number of particles:
5185 © 1999 The American Physical Society
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N@ f #ªE f ~w!dw5E n~x!dx. ~5!

~2! Energy~unit E0ªM0V0
25Gm2):

E@ f #ª
1

2E v2f ~w!dw1
1

2E f ~w!F~x!dw ~6!

5
1

2E v2f ~w!dw1
1

2E n~x!F~x!dx, ~7!

where the first term in each of the two last members rep
sents the kinetic energyEc@ f # and the second one the pote
tial energyEp@ f #5Ep@n#.

~3! Angular momentum with respect to the center of m
~unit M0V0L0):

J@ f #5E rvf f ~w!dw, ~8!

where we have used polar coordinates (r ,f).
~4! Boltzmann entropy~unit S0ªkb , Boltzmann con-

stant!:

S@ f #ª2E f ~w!ln@ f ~w!#dw. ~9!

B. The problems

We are interested in this paper in determining the sta
equilibria—i.e., the maximum entropy states—to which
isolated collisional system should relax when it evolves
conserving its numberN of particles, its energyE and pos-
sibly its angular momentumJ. We thus need to consider th
two following problems.

~i! Consider the setG(N,E) of all the distribution func-
tions which have well-defined kinetic energy, potential e
ergy and entropy, and a given numberN of particles and a
given energyE. Is there among them one for which the e
tropy is a global maximum?

~ii ! Consider the subsetG(N,E,J) of G(N,E) constituted
of all the functions having a well defined angular moment
equal toJ. Is there among them one for which the entropy
a global maximum?

III. UPPER BOUND ON THE ENTROPY AND ENTROPY
MAXIMIZER IN G„N,E…

A. The case of a bounded system

For a system confined in a bounded domainD,R2, it is
proven in paper I that the entropy is bounded from above
the setG(D,N,E) containing the functions ofG(N,E) van-
ishing for xP” D, with

S1~D,N,E! ªsup
f PG(D,N,E)

S@ f #<
2E

N
1N ln~ep2!5:S* ~N,E!.

~10!

@Eq. ~10! is given in paper I as Eq.~5.9!, but without proof.
Owing to its importance here, we indicate in the Append
how it can be derived#.
-

s

le

y

-

n

Moreover, it is shown therein that there is a unique e
tropy maximizerf R

1 when D is a disk of radiusR and area
V5pR2, f R

1 and its potentialFR
1 being given, respectively

by

f R
15

Nb

p2R2

~22bN!

@~22bN!1bNr2/R2#2
e2bv2/2 ~11!

and

FR
152N ln R1

2

b
lnF22bN

2
1

bN

2

r 2

R2G , ~12!

whereb(N,E,V),2/N is the unique solution to the equatio

E5
N2

2 F ln
V

p
1

4

bN
1S 2

bND 2

lnS 12
bN

2 D G . ~13!

B. Upper bound on the entropy

Inequality ~10! has the remarkable property that its rig
hand side~RHS! does not depend on the particular domainD
under consideration. This suggests that the entropy of
unconfined plane system havingN particles and an energyE
should also admitS* (N,E) as an upper bound. That this
the case can be seen as follows.

Consider an arbitrary functionf in G(N,E), and define
f k5 f for r<k, kPN, and f k50 for k,r . We can apply Eq.
~10! to f k , which characterizes a system havingNk (<N)
particles, and well defined energy and entropy. Then we
the seeked inequality

S@ f #<S1~N,E!ªsup
G(N,E)

S@ f #<
2E

N
1N ln~ep2! ~14!

by taking the limitk→` and by applying a standard conve
gence theorem.

C. Existence of an entropy maximizer

Next we show the existence of an entropy maximizer, i
of a function f 1 such that

S@ f 1#5S1~N,E!. ~15!

For that, we consider the formal Euler-Lagrange equat
associated with our maximization problem and construc
particular solution to it belonging toG(N,E). Then we check
a posteriori that the latter satisfies Eq.~15!.

A solution to Euler-Lagrange equation is of the standa
form

f 15e2a2b(v2/21F1), ~16!

wherea andb are Lagrange multipliers relative to the pa
ticles number and energy constraints, respectively, and
potentialF1 of f 1 satisfies Poisson equation

¹2F15
8p2

b
e2a2bF1

. ~17!
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The latter can be solved easily if we restrict our attention
circularly symmetric solutions, in which case we get the w
known expression

bF152 lnS l21
p2e2a

l2
r 2D , ~18!

wherer 5uxu andl2 is an arbitrary positive constant.
The values of the three parametersa, b, andl2 can be

fixed in such a way thatf 1 belongs toG(N,E) and that the
gauge condition of Sec. II is fulfilled byF1. Indeed we find
the following.

The conditionN@ f #5N gives

N5
l2

p2E e2bv2/2

~r 21l2!2
dw5

2

b
, ~19!

whence

b5
2

N
~20!

and

F15N ln~l21r 2!, ~21!

f 15
l2

p2

e2v2/N

~l21r 2!2
. ~22!

After some straightforward algebra, the kinetic, poten
and total energies of the functionf 1 given by Eq.~22! are
found to be given, respectively, by

Ec@ f 1#5
N2

2
, ~23!

Ep@ f 1#5
N2

2
~11 ln l2!, ~24!

E@ f 1#5Ec@ f #1Ep@ f #5
N2

2
~21 ln l2!. ~25!

Then the conditionE@ f 1#5E is satisfied by taking

l25e2(E2N2)/N2
. ~26!

bF1 has the asymptotic behavior

bF1 ;
r→`

4 ln r 12 ln
p2e2a

l2
1

2l4

p2e2ar 2
1••• . ~27!

Our gauge condition on the gravitational potential impo
the vanishing of the constant term, which gives

p2e2a5l2. ~28!

Therefore the Euler-Lagrange equation admits a unique
cularly symmetric solution inG(N,E). It is given by
o
ll

l

s

ir-

f 15
e2(E2N2)/N2

p2

e2v2/N

~e2(E2N2)/N2
1r 2!2

~29!

and generates the potential

F15N ln~e2(E2N2)/N2
1r 2!. ~30!

We remark that~i! Our construction shows that the s
G(N,E) is nonempty whichever be the values ofN andE. ~ii !
f 1 and F1 are the limits whenR→` of the functionsf R

1

andFR
1 given by Eqs.~11! and~12!, respectively. ForE and

N fixed, Eq.~13! shows indeed that

lim
R→`

~bN!52, ~31!

lim
R→`

@~22bN!ln R#50, ~32!

lim
R→`

@~22bN!R2/2#5e2(E2N2)/N2
, ~33!

which implies forR→`

FR
15NF2

~22bN!ln R

bN
1

2

bN
lnS 22bN

2
R21

bN

2
r 2D G

→N ln~e2(E2N2)/N2
1r 2!5F1,

f R
15

bN

2p2

~22bN!R2/2

@~22bN!R2/21~bN/2!r 2#2
e2bv2/2

→ 1

p2

e2(E2N2)/N2

e2(E2N2)/N2
1r 2

e2v2/N5 f 1. ~34!

Consider now the entropy off 1. A short calculation gives

S@ f 1#5
2E

N
1N ln~ep2!. ~35!

Comparing Eqs.~35! and~14!, we see at once thatf 1 has the
largest possible value allowed by the latter equation. The
fore,

S@ f 1#5S1~N,E!5
2E

N
1N ln~ep2!, ~36!

and f 1 maximizes the entropy overG(N,E).

D. Uniqueness of the entropy maximizer

The argument above gives a particular maximizerf 1, and
the next question which needs to be addressed is that o
existence of other entropy maximizers. To discuss this pr
lem, we first note that any maximizer needs to satisfy
Euler-Lagrange equation of our problem~see the discussion
in Ref. @5#!. Therefore, it is clear from the arguments abo
that f 1 is the only circularly symmetric maximizer. On th
other hand, nonsymmetric maximizers do not exist. This
be proven by noting that the associated potential should
solution to Eq.~17! and by applying to the latter the follow
ing result@6,7#: Any solutionu to the equation
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¹2u5e2u in R2 ~37!

which satisfies the condition

E e2u dr,` ~38!

is necessarily circularly symmetric.
To summarize this section, we can assert that, among

states of a system having prescribed values of the numb
particles and energy, there is one and only one which m
mizes entropy. The associated distribution function, given
Eq. ~29!, is a Maxwellian at the temperature

T5b215N/2 ~39!

or, in dimensional form,

T5
Gm2N

2kb
. ~40!

It is remarkable that this value is independent of the ene
It should be noted that the existence of a unique temp

ture at which an equilibrium can exist can also be establis
by using virial-type relations~see paper I, Appendix C, fo
an expression of the virial theorem for a gravitational syst
confined in a bounded domain, which strongly suggest
first sight that the relation 2T5N should hold indeed for a
system occupying the whole plane; and Ref.@7# for a virial-
type relation valid for an unconfined two-dimensional no
neutral plasma—a system which has strong formal conn
tions with the one considered here!.

IV. UPPER BOUND ON THE ENTROPY
AND NONEXISTENCE OF AN ENTROPY MAXIMIZER

IN G„N,E,J…

We now reconsider the previous problem in the set
admissible functionsG(N,E,J). As

G~N,E,J!,G~N,E!, ~41!

entropy is also bounded from above onG(N,E,J), with

S1~N,E,J! ªsup
G(N,E,J)

S@ f #<S1~N,E!ªsup
G(N,E)

S@ f #. ~42!

Let us determine the value of the least upper bou
S1(N,E,J).

We first introduce the particular distribution functionf R
defined as follows.

~1! f R has the same number densityn as the function
given by Eq.~22!, where we takel to be a free parameter
therefore,f R hasN particles and a potential energy@see Eq.
~24!#

Ep@ f R#5
N2

2
@11 ln l2#, ~43!

and the particles contained inside the diskBRª$r ,R% of
radiusR have a moment of inertia
he
of
i-
y

y.
a-
d

at

-
c-

f

d

I R@ f R#ªE
BR3R2

r 2f R dw5Nl2H ln
l21R2

l2
2

R2

l21R2J
5:I ~R,l! ~44!

with respect toO.
~2! OutsideBR , f R is a Maxwellian with an inverse tem

peratureb.0. InsideBR , it is a Maxwellian with the same
b when viewed in a frame rotating at the angular velocity

Vª

J

I ~R,l!
. ~45!

SettingV(r )ªVQ(R2r ) ~with Q the usual Heaviside step
function! we thus have

f R~r ,v r ,vf!ª
Nbl2

2p2

1

~r 21l2!2
e2b$vr

2
1[vf2rV(r )] 2%/2.

~46!

Then the angular momentum off R is equal toJ, and its
kinetic energy is given by

Ec@ f R#5
N

b
1

J2

2I ~R,l!
. ~47!

~3! The values ofl andb are fixed in such a way that

E@ f R#5
N

b
1

J2

2I R@ f R#
1

N2

2
@11 ln l2#5E. ~48!

As for l, we take the value given by Eq.~26!, which is
independant ofR. Thus we need to chooseb in such a way
that

bN

2
5

N2

N22J2/I ~R,l!
, ~49!

which is possible if R is large enough for havingN2

.J2/I (R,l) @note thatI (R,l)→` whenR→`#.
Our function f R thus belongs toG(N,E,J)—which ap-

pears to be nonempty for any choices ofN, E, and J. Its
entropy is related to that of the maximizerf 1 in G(N,E) by

S@ f R#5S@ f 1#2N ln
bN

2
5S1~N,E!2N ln

N2

N22J2/I ~R,l!

<S1~N,E,J!<S1~N,E!, ~50!

where we have made use of Eq.~42! to write the last inequal-
ity. If we take the limitR→`, we thus have

lim
R→`

S@ f R#5S1~N,E!<S1~N,E,J!<S1~N,E!, ~51!

whence

S1~N,E,J!5S1~N,E!. ~52!

Adding the angular momentum constraint does not cha
the least upper bound on the entropy.
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Let us then suppose that there is a functionf 1
1

PG(N,E,J) which maximizes the entropy. The result abo
implies that it also maximizes the entropy inG(N,E). But we
know by the results of Sec. III that there is only one ma
mizer inG(N,E), f 1, and the latter has zero angular mome
tum. Then, but for the case whereJ50, the problem of
maximizing entropy inG(N,E,J) has no solutions belongin
to that set. Clearly, what happens here is that the ang
momentum constraint is ‘‘lost at infinity’’ in the process o
entropy maximization.

The nonexistence of an entropy maximizer—but not
equality ~52!—can also be deduced by the following arg
ment. If a maximizerf 1

1 existed inG(N,E,J), it would be
related to its potentialF1

1 by

f 1
15e2a2b[vr

2/21(vf2rv)2/21F1
1

2v2r 2/2], ~53!

which can be derived by the same standard techniques a
~16!, a, b, andbv being the Lagrange multipliers assoc
ated with theN, E, and J constraints. But clearly such a
equation cannot have any solution of finite mass owing to
exponentially growing factorebv2r 2/2 present in its right-
hand side~we haveb.0 as a consequence of the kine
energy being positive!.

Note that an argument quite similar to the one repor
here, although not presented in a completely formalized w
has been previously applied to three-dimensional syst
@8#.

V. UPPER BOUNDS ONH FUNCTIONS
AND GENERALIZED ENTROPIES

H functions have been introduced in gravitational phys
by Tremaineet al. @9# as a useful tool for studying the phe
nomenon of violent relaxation suggested by Lynden-B
@10#. For future reference, we show here that the up
bound on the entropy derived above implies at once the
istence of a nontrivial upper bound on a large class oH
functions of two-dimensional systems.

A. Definitions

If C( f ) is a convex function such thatC(0)50, the func-
tional

HC@ f #ª2E C@ f ~w!#dw ~54!

is called an ‘‘H function’’ @9#. For instance, the quantities

Hq@ f #ª2E f q dw ~55!

areH functions for any real numberq.1 @C( f )5 f q#. Re-
lated to them are the so-called Renyi’s and Tsallis’sq entro-
pies, defined, respectively, by@3#

Srq52
N

q21
ln

uHq@ f #u
N

~56!

and @4#
-
-

ar

e

Eq.

e

d
y,
s

s

ll
r
x-

Stq52
uHq@ f #u2N

q21
. ~57!

Both quantities reduce to Boltzmann entropy~9! when q
→11:

lim
q→11

Srq@ f #5 lim
q→11

Stq@ f #52E f ln f dw5S@ f #. ~58!

B. Upper bounds onH q , Srq , Stq

Using the inequality~valid for x,y>0): x ln(x/y)>(x2y),
which is an immediate consequence of the convexity of
function f defined byf (x)5x ln x for x.0 and f (0)50, we
obtain

E f

N
ln

f /N

f q/uHq@ f #u
dw>0. ~59!

Combining this relation with Eq.~14!, we obtain for anyf in
G(N,E)

Srq@ f #52
N

q21
ln

uHq@ f #u
N

<S@ f #<
2E

N
1N ln~ep2!,

~60!

whence

Hq@ f #<2
N

~ep2!(q21)
e22(q21)E/N2

,0 ~61!

and

Stq@ f #<2
N

q21 Fe22(q21)E/N2

~ep2!(q21)
21G,

N

q21
. ~62!

Then all the quantitiesHq , Srq , andStq admit upper bounds
overG(N,E). It must be noted that the boundedness ofHq is
nothing but surprising, asHq is the integral of a nonpositive
function. What is more important regarding this quantity
that it admits a strictly negative upper bound.

The bound onHq@ f # implies at once that

HC@ f #<aHq@ f #<2
aN

~ep2!(q21)
e22(q21)E/N2

,0 ~63!

for any H function associated to aC such that, for some
constantsa.0 andq.1,

asq<C~s! ; s>0. ~64!

This provides us with a nontrivial upper bound for a fair
large class ofH functions.

VI. CONCLUSION

Let us summarize and briefly comment on the resu
which have been obtained in this paper. Boltzmann entr
is bounded from above over the setG(N,E) of all the distri-
bution functions having a given numberN of particles and a
given energyE. The maximum of the entropy is reached f
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only one distribution function, which is a Maxwellian at
temperatureGm2N/2kb . It should be noted that a simila
result holds true in exact statistical mechanics: in the mic
canonical ensemble, the temperature of a system chara
ized byN, E, andJ50 can be shown indeed to be given b
@11#

kbT5
N23/2

N21

Gm2N

2
. ~65!

The argument leading to the previous conclusion a
shows that there is no equilibrium state for a system in c
tact with a thermostat, but if the temperature of the lat
takes the peculiar value recalled above. This is in cont
with the case of a confined system, for which equilibria we
found in paper I to exist for any temperatureT
.Gm2N/2kb . But it is in accordance with the nonexisten
of the statistical mechanics canonical ensemble for an un
fined system@11#.

The upper bound on the entropy is not changed if a f
ther constraint fixing the total angular momentumJ of the
system is imposed. WhenJÞ0, there is no distribution func
tion in G(N,E,J) maximizing the entropy. Here, there is
difference with the microcanonical approach of exact sta
tical mechanics, which leads to well defined results fo
system havingN, E, andJ fixed @11#.

Each H function Hq (q.1) admits a strictly negative
upper boundHq

1(N,E) over G(N,E). This result can be re
expressed in terms of upper bounds for Renyi’s and Tsal
q entropiesSrq and Stq , which have proven to be usefu
quantities in statistical physics and information theory.
also naturally extends to all theH functions associated to
convex functionC satisfyingC( f )>a fq for some constants
a.0 andq.1.

APPENDIX: DERIVATION OF THE EXPLICIT
UPPER BOUND

Let D be some arbitrary bounded domain. As shown
paper I, the entropy of an arbitrary functionf PG(D,N,E) is
bounded by

S@ f R
1#5bE1NF ~12bN!ln

V

p
112 ln

bN

2

2S 12
2

bND lnS 12
bN

2 D G , ~A1!
i,
-
er-

o
-
r
st
e

n-

-

-
a

’s

t

with R the radius of a disk having the same area asD and f R
1

given by Eq.~11!. Combining the latter equation with Eq
~13!—which determinesbP]0,2/N@ as a function ofN and
E—and setting

uª
2

bN
P]1,1`@ , ~A2!

we obtain

S1~D,N,E!<S@ f R
1#

<
2E

N
1NF ln~ep2!121 ln u

22u2~u21!2 lnS 12
1

u D G
5:

2E

N
1N@ ln~ep2!1g~u!#. ~A3!

After a little algebra, we get

g8~u!5~u21!F 223u

u~u21!
22 lnS 12

1

u D G
5:~u21!h~u!, ~A4!

lim
u→`

h~u!50, ~A5!

h8~u!5
11~u21!2

u2~u21!2
.0. ~A6!

h(u), being an increasing function vanishing at infinity,
negative on ]1,1`@ . Then g8(u),0, and g(u) decreases
monotonically, which implies

g~u!, lim
u→11

g~u!50, ; uP]1,1`@ . ~A7!

Equation~10! thus follows immediately by reinjecting thi
result into Eq.~A3!.
.
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