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Thermodynamics of a two-dimensional unbounded self-gravitating system
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The thermodynamics of a two-dimensional self-gravitating system occupying the whole plane is considered
in the mean-field approximation. First, it is proven that, if the nunibef particles and the total enerdgyare
imposed as the only external constraints, then the entropy admits the least upper3¢ihe&)=2E/N
+ N In(en?) (in appropriate units Moreover, there does exist a unique state of maximum entropy, which is
characterized by a Maxwellian distribution function with a temperaiureN/2 independent oE. Next, it is
shown that, if the total angular momentulis imposed as a further constraint, the largest possible value of the
entropy does not change, and there is no admissible state of maximum entropy, but in the 6agénally,
some inequalities satisfied by a class of so-caledunctions and related generalized entropies are given.
[S1063-651%9902011-5

PACS numbgs): 05.20.Gg, 05.20.Dd, 95.30.Sf

. INTRODUCTION R2. We work with dimensionless variables, the units of
length, velocity, and mass being taken to be, respectitgly,
The problem of the mean-field thermodynamics of a two-(an arbitrarily chosen quantityVy:=(Gm)Y? (with G the
bounded plane domaib has been considered by Katz and A state of the system is assumed to be entirely described
Lynden-Bell[1] and more recently by Aly2] (paper | here- 1y the one-particle distribution functiori(w) [unit f,
aften. In this last paper, it was shown in partlculgr that the==(L0V0)_2] defined over the phase spaRé={w=(x,v)}
Boltzmann entropy of an isolated system constituted\of where x and v denote the position and the veloci'ty c;f a

particles and having an ener@y is bounded from above by L X e i )
a numberS*(N,E) independent ofD. Moreover, it was pamcle Ina Gal!lean frame of origi@. f(\.N) gives the den
sity of particles in the phase-space, while

proven that, at least whel is a disk, the maximum of the
entropy is reached by only one distribution function, which
is naturally of Maxwellian type. Then the system admits a n(x):f f(x,v)dv (1)
unique thermodynamically stable equilibrium state.

The main purpose of this paper is twofold. First, we want ) o ) )
to extend the results quoted above to an unconfined—i.egives the particle density in the physical spee integral
occupying the whole p|an§2_iso|ated system ofN par- with respect todw (respectively,dx, dV) is taken over the
ticles having a prescribed ener@y Secondly, we want to Whole R* (respectivelyR?)]. Without loss of generality, we
discuss how the equilibrium state is affected when the totalmposeO to coincide with the center of mass of the system,
angular momentund is imposed as a further constraint. Fix- i-€., we assume that
ing the value of] is certainly natural, as angular momentum
is a constant of motion for an unconfined system whose evo- B
lution is governed by any one of the classical kinetic equa- f n(x)x dx=0. 2
tions (J is also conserved when the system is confined inside
a disk; in that case, the constraiht 0 was assumed in Ref. f generates the mean gravitational potentiait <I>O:=V(23
[1] and in paper)l =Gm)

The paper is organized as follows. The problems we want
to solve are given a precise mathematical formulation in Sec.
Il. The existence of an entropy maximum and that of an d)(x)::zf In|x—x’|f(w’)dw’=2f In|x—x'[n(x")dx’.
entropy maximizer are discussed in Secs. Il and IV wNen &)
and E, and N, E, and J, respectively, are imposed to take
fixed values. Finally, the bound derived in Sec. Ill for the
Boltzmann entropy is shown in Sec. V to imply upper
bounds for a class of so-callédl functions and related gen-
eralized entropief3,4].

A choice of gauge is implicit in this relation: the potential
created by a particle is taken to vanish at a unit distance. Of
course,d satisfies Poisson equation

II. STATEMENT OF THE PROBLEMS VZ(D:A'W”:A'#J f(x,v)dv. (4)
A. Assumptions and important physical quantities

We consider a two-dimensional self-gravitating system Fromf, we can compute the following global quantities:
constituted of particles of mass occupying the whole plane (1) Number of particles
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Moreover, it is shown therein that there is a unique en-
N[f]==f f(W)dW=J n(x)dx. () tropy maximizerf; whenD is a disk of radiusR and area
V==R?, f} and its potentiatP; being given, respectively,
(2) Energy (unit Eq:=MVi=Gn?): by
1 1 —
E[f]::zf v2F(w)dw+ Ef Fwddw  (6) g NB (2= AN) B (1)
m°R? [(2— BN) + BNr?/R%)?
1 1 and
=§J vzf(w)dw+§J n(x)®(x)dx, (7)
. . 2 |2-BN BN r?
where the first term in each of the two last members repre- ®LF=2NInR+—In + = = (12
sents the kinetic enerdy,[ f] and the second one the poten- B 2 2 R

tial energyE [ f]=E,[n]. . . . .
(3) Angular momentum with respect to the center of mas¥here(N,E,V)<2/N is the unique solution to the equation

(unit MOVOL0): N2 2 2 IBN
: 20

E=%

vV 4
In—+ —-+

7 BN | BN 2

J[f]:f rv, f(w)dw, (8)

. B.U bound on th t
where we have used polar coordinatesd). pper bound on the entropy

(4) Boltzmann entropy(unit Sy:=k,, Boltzmann con- Inequality (10) has the remarkable property that its right
stanj: hand sidgRHS) does not depend on the particular dom@in

under consideration. This suggests that the entropy of an

unconfined plane system havihgparticles and an enerdy
S[f]‘:_f F(w)In[ f(w)]dw. © should also admi§* (N,E) as an upper bound. That this is
the case can be seen as follows.

Consider an arbitrary functiofin G(N,E), and define
f =1 for r=<k, ke N, andf, =0 for k<r. We can apply Eq.

We are interested in this paper in determining the stablg10) to f,, which characterizes a system haviNg (<N)
equilibria—i.e., the maximum entropy states—to which anparticles, and well defined energy and entropy. Then we get
isolated collisional system should relax when it evolves bythe seeked inequality
conserving its numbeN of particles, its energ§ and pos-
sibly its angular momenturd. We thus need to consider the
two following problems.

(i) Consider the se¢(N,E) of all the distribution func-
tions which have well-defined kinetic energy, potential en-
ergy and entropy, and a given numbrof particles and a
given energyE. Is there among them one for which the en-
tropy is a global maximum? _ o

(i) Consider the subs&k(N,E,J) of G(N,E) constituted C. Existence of an entropy maximizer
of all the functions having a well defined angular momentum Next we show the existence of an entropy maximizer, i.e.,
equal toJ. Is there among them one for which the entropy isof a functionf ™ such that
a global maximum?

B. The problems

S f]<S*(N,E):=sup§ f]< E+ Nin(em?) (14
G(N,E) N

by taking the limitk— o and by applying a standard conver-
gence theorem.

g f*]=S"(N,E). (15
IIl. UPPER BOUND ON THE ENTROPY AND ENTROPY . .
MAXIMIZER IN  G(N,E) For th_at, we _con5|der th_e formal Euler-Lagrange equation
associated with our maximization problem and construct a
A. The case of a bounded system particular solution to it belonging t6(N,E). Then we check

For a system confined in a bounded domBia@R?, itis @ posteriorithat the latter satisfies E(LS).
proven in paper | that the entropy is bounded from above in A solution to Euler-Lagrange equation is of the standard
the setg(D,N,E) containing the functions of(N,E) van-  form

ishing forx & D, with 2
f+:efafﬁ(v 2+ ), (16)

2E
S*(D,N,E) :=sup S[f]<W+NIn(e7r2)=:S*(N,E).

teGDNE) wherea and 8 are Lagrange multipliers relative to the par-

(10) ticles number and energy constraints, respectively, and the
potential®* of f* satisfies Poisson equation

[Eq. (10) is given in paper | as Eq5.9), but without proof. 5

Owing to its importance here, we indicate in the Appendix V%*zsie‘“‘/”’* 17)

how it can be derivef ’
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The latter can be solved easily if we restrict our attention to
circularly symmetric solutions, in which case we get the well ft=

known expression

=2In

B

2A—
mee
N2+ rz),
A2

wherer =|x| and\? is an arbitrary positive constant.

The values of the three parameters 8, and\? can be
fixed in such a way that™ belongs toG(N,E) and that the
gauge condition of Sec. Il is fulfilled bg . Indeed we find

the following.
The conditionN[f]=N gives

e —Bv 212
vl e

whence

i
Zl N

and

dT=NIn(A%+r?),

2 —Vv2IN
+:)\ e

2 (\2+12)2’

After some straightforward algebra, the kinetic, potential
and total energies of the functidn™ given by Eq.(22) are

found to be given, respectively, by

2
Edf']=—5

N2
Ep[f+]:7(1+|m\2),

2

E[f"]=E[f]+E,[f]= 7(2+In \?).

Then the conditiorE[ f ' ]=E is satisfied by taking

)\ZZeZ(E—NZ)/NZ

B®" has the asymptotic behavior

N mle
BPT ~ 4Inr+21In 2 +

r—o

224

e or

2+
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ez(E—NZ)/N2 e—v2/N
2 (eZ(E—Nz)/N2+r2)2 (29
and generates the potential
(18) + 2(E-N?)/IN2 .2
O+ =N In(e?ENIN"4 2y (30)

We remark that(i) Our construction shows that the set
G(N,E) is nonempty whichever be the valueshandE. (ii)
f* and®* are the limits wherR—c of the functionsf
and® given by Eqs(11) and(12), respectively. FoE and
N fixed, Eq.(13) shows indeed that

lim (BN)=2 (32)
R— o
(19 lim [(2— AN)INR]=0, 32
R—o
lim [(2— BN)R%/2] = g2(E~NIIN? (33)
R—®
(20 L
which implies forR— oo
(2-=BN)INR 2 (2—=BN__ BN
dE=N|-——"—+—In R2+—r2”
o1 BN BN 2 2
SN In(e2ENIN 4 r2) =@+,
(22) . BN (2— BN)R¥2 .
R 272 [(2— BN)R2/2+ (BNI2)r2]2
2(E—N2)/N?
L e e VIN=fT, (34)

T S E-ND/NZ L 2
2 @2E-N)IN? (2

Consider now the entropy df". A short calculation gives

(23
2E
S[f*]:WJrNIn(ewz). (35)
(24)
Comparing Eqs(35) and(14), we see at once that has the
largest possible value allowed by the latter equation. There-
(25) fore,
2E
Sf*]=S*(N, E)——+N In(ew?), (36)
(26) andf* maximizes the entropy ovei(N,E).

D. Uniqueness of the entropy maximizer

The argument above gives a particular maximiizerand
(27) the next question which needs to be addressed is that of the
existence of other entropy maximizers. To discuss this prob-
lem, we first note that any maximizer needs to satisfy the

Our gauge condition on the gravitational potential imposes=uler-Lagrange equation of our problgisee the discussion

the vanishing of the constant term, which gives

e 4=\2

in Ref.[5]). Therefore, it is clear from the arguments above
that f* is the only circularly symmetric maximizer. On the

(28 other hand, nonsymmetric maximizers do not exist. This can

be proven by noting that the associated potential should be a
Therefore the Euler-Lagrange equation admits a unique cirsolution to Eq.(17) and by applying to the latter the follow-
cularly symmetric solution iG(N,E). It is given by ing result[6,7]: Any solutionu to the equation
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Viu=e Y in R? (37
which satisfies the condition
f e Ydr<om (38

is necessarily circularly symmetric.
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IR[fR] f 2frdw=N\?{ | VARR
= r W= n —
TR Jaerz T N2 \2+R2
=:1(R,\) (44)

with respect toO.
(2) OutsideBg, fg is a Maxwellian with an inverse tem-
peratureB>0. InsideBg, it is a Maxwellian with the same

To summarize this section, we can assert that, among the when viewed in a frame rotating at the angular velocity
states of a system having prescribed values of the number of

particles and energy, there is one and only one which maxi- J

mizes entropy. The associated distribution function, given by

Eqg. (29), is a Maxwellian at the temperature

T=B"1=N/2 (39
or, in dimensional form,
T= GmN 40

Q==m. (45)

SettingQ(r):=Q 0O (R~—r) (with ® the usual Heaviside step-
function) we thus have
NBN2 1

PR T BV vgromiBe
27 (r?+\?%)?2

fr(r, vy ,vy)=
(46)

Then the angular momentum d§ is equal toJ, and its

It is remarkable that this value is independent of the energyinetic energy is given by
It should be noted that the existence of a unique tempera-
ture at which an equilibrium can exist can also be established N J?

by using virial-type relationgsee paper I, Appendix C, for

Ec[fR]=E+m- (47)

an expression of the virial theorem for a gravitational system
confined in a bounded domain, which strongly suggests at (3) The values of\ and g are fixed in such a way that

first sight that the relation =N should hold indeed for a
system occupying the whole plane; and R&.for a virial-

type relation valid for an unconfined two-dimensional non-

2 N2

J
———+ —[1+In\?]=E.

21g[fr] 2 48

Elfrl= 5+

neutral plasma—a system which has strong formal connec-

tions with the one considered here

IV. UPPER BOUND ON THE ENTROPY
AND NONEXISTENCE OF AN ENTROPY MAXIMIZER
IN G(N,E,J)

We now reconsider the previous problem in the set of

admissible functiong/(N,E,J). As
G(N,E,J)CG(N,E), (41
entropy is also bounded from above G(N,E,J), with

S*(N,E,J) :==supS f]<S"(N,E):=sup S f].
G(N,E,J) G(N,E)

(42

As for A, we take the value given by E@26), which is
independant oR. Thus we need to chooggin such a way
that

BN N?

2 NZ2-JI(RN) 49
which is possible ifR is large enough for having\?
>J?%/1(R,\) [note thatl (R,\)— % whenR—].

Our function fg thus belongs taG(N,E,J)—which ap-
pears to be nonempty for any choices Nf E, and J. Its
entropy is related to that of the maximizet in G(N,E) by

fa]=9[f" —Nlﬂ—S+NE—NIN—2
SHRl=SIf 1= NI =S (N.E) N Inr—o s

Let us determine the value of the least upper bound

S*(N,E,J).

We first introduce the particular distribution functidg
defined as follows.

(1) fgr has the same number densityas the function
given by Eq.(22), where we takex to be a free parameter;
therefore,fr hasN particles and a potential enerfsee Eq.

(24)]

2

N
Ep[fR]=7[1+|n>\2], (43

and the particles contained inside the dBk:={r <R} of
radiusR have a moment of inertia

<S"(N,E,J)<S*(N,E), (50

where we have made use of E42) to write the last inequal-
ity. If we take the limitR— o, we thus have

lim S[fr]=S"(N,E)<S*"(N,E,J)<S*(N,E),

R— o

(51)

whence

S*(N,E,J)=S"(N,E). (52

Adding the angular momentum constraint does not change

the least upper bound on the entropy.
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Let us then suppose that there is a functidp [Ho[f1[—N
e G(N,E,J) which maximizes the entropy. The result above q= "~ q——l (57)
implies that it also maximizes the entropy@(N,E). But we
know by the results of Sec. Ill that there is only one maxi-Both quantities reduce to Boltzmann entrof§) when q
mizer inG(N,E), f*, and the latter has zero angular momen-—1+:
tum. Then, but for the case whede=0, the problem of
maximizing entropy inG(N,E,J) has no solutions belonging
to that set. Clearly, what happens here is that the angular
momentum constraint is “lost at infinity” in the process of

lim S[f]= lim Stq[f]z—f fInfdw=9[f]. (58)
g-1"

q~>l+

entropy maximization.

The nonexistence of an entropy maximizer—but not the
equality (52—can also be deduced by the following argu-

ment. If a maximizerf; existed inG(N,E,J), it would be
related to its potentia®; by

fir:e—a—ﬁ[vf/2+(v¢—rw)2/2+rbf—w2r2/2]' (53)

B. Upper bounds onH, Sq, Siq

Using the inequalityvalid for x,y=0): x In(x/y)=(Xx-Y),
which is an immediate consequence of the convexity of the
functionf defined byf(x)=xInx for x>0 andf(0)=0, we
obtain

f fIN
~In————dw=0. 59
which can be derived by the same standard techniques as Eq. f N nfq/|Hq[f]| " 59

(16), a, B, and Bw being the Lagrange multipliers associ-

ated with theN, E, andJ constraints. But clearly such an Combining this relation with E¢(14), we obtain for anyf in
equation cannot have any solution of finite mass owing to th&/(N,E)

exponentially growing factoefe’r’/2 present in its right-
hand side(we have3>0 as a consequence of the kinetic

energy being positive

Note that an argument quite similar to the one reported

here, although not presented in a completely formalized waY, hence
has been previously applied to three-dimensional systems

[8].

V. UPPER BOUNDS ONH FUNCTIONS
AND GENERALIZED ENTROPIES

H functions have been introduced in gravitational physics
by Tremaineet al.[9] as a useful tool for studying the phe-
nomenon of violent relaxation suggested by Lynden-Bell

S [f]=—llnw<8[f]<2—E+Nln(e 2)
a g-1~ N TN h
(60)
Hf]=- — e 2a-DEN’<g (61)
4 (er?)@1)
and
N e—z(q—l)E/N2
S‘q[f]g_q—l (eﬂ.Z)(Q*l)_ <q—1' (62)

[10]. For future reference, we show here that the upper
bound on the entropy derived above implies at once the exthen all the quantitiesly, S;q, andS;, admit upper bounds
istence of a nontrivial upper bound on a large clasHof overG(N,E). It must be noted that the boundednessigfis

functions of two-dimensional systems.

A. Definitions

If C(f) is a convex function such th&(0)=0, the func-
tional

Hc[f]==—f C[f(w)]dw (59

is called an ‘H function” [9]. For instance, the quantities

Hq[f]::—f £ dw (55)

areH functions for any real numbear>1 [C(f)={9]. Re-
lated to them are the so-called Renyi's and Tsallgsentro-
pies, defined, respectively, H$]

N [Hq[f]]

Srq:_q__ln N (56)

and[4]

nothing but surprising, ad is the integral of a nonpositive
function. What is more important regarding this quantity is
that it admits a strictly negative upper bound.

The bound orH [ f] implies at once that

aN
Hc[f]gqu[f]g - meiz(Q*l)E/N2<o (63)
em

for any H function associated to & such that, for some
constanta>0 andq>1,

asisC(s) V s=0. (64)

This provides us with a nontrivial upper bound for a fairly
large class oH functions.

VI. CONCLUSION

Let us summarize and briefly comment on the results
which have been obtained in this paper. Boltzmann entropy
is bounded from above over the g#tN,E) of all the distri-
bution functions having a given numbirof particles and a
given energyE. The maximum of the entropy is reached for
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only one distribution function, which is a Maxwellian at a with R the radius of a disk having the same are®amndf
temperatureGnm?N/2k,, . It should be noted that a similar given by Eq.(11). Combining the latter equation with Eq.
result holds true in exact statistical mechanics: in the micro{13)—which determineg3 €]0,2/N[ as a function olN and
canonical ensemble, the temperature of a system characteg-—and setting

ized byN, E, andJ=0 can be shown indeed to be given by

o 2 11,49 (A2)
i=——¢g|l,+ 0|,
T N-32 Gm’N 6 BN
PTTN-1 2 69 :
we obtain
The argument leading to the previous conclusion also
shows that there is no equilibrium state for a system in con- S*(D,N,E)<gfq]

tact with a thermostat, but if the temperature of the latter
takes the peculiar value recalled above. This is in contrast
with the case of a confined system, for which equilibria were
found in paper | to exist for any temperatur@
>Gm2N/2kb. But it is in accordance with the nonexistence —20—(0—1)2 In( 1— E”
of the statistical mechanics canonical ensemble for an uncon-
fined systenj11].

The upper bound on the entropy is not changed if a fur- 2E
ther constraint fixing the total angular momentunof the =:W+N[In(ew2)+g(0)]. (A3)
system is imposed. Wheh# 0, there is no distribution func-
tion in G(N,E,J) maximizing the entropy. Here, there is a
difference with the microcanonical approach of exact statis
tical mechanics, which leads to well defined results for a
system havind\, E, andJ fixed [11].

EachH function Hy (g>1) admits a strictly negative
upper bound—|;(N,E) over G(N,E). This result can be re-

In(em?)+2+In 6

2E+N
g_
N

After a little algebra, we get

expressed in terms of upper bounds for Renyi’s and Tsallis’s =:(6—1)h(0), (A4)
q entropiesS;q and S, which have proven to be useful
quantities in statistical physics and information theory. It limh(6)=0 (A5)

also naturally extends to all the functions associated to a
convex functionC satisfyingC(f)=af% for some constants
a>0 andg>1.

f— o0

1+(6—1)2
h'(8)= ———>0. (AB)
APPENDIX: DERIVATION OF THE EXPLICIT 02(0—1)2

UPPER BOUND

Let D be some arbitrary bounded domain. As shown inh(9), _being an increasing fLIJnction vanishing at infinity, is
paper |, the entropy of an arbitrary functiér G(D,N,E) is ~ N€gative on J+e[. Theng’(¢)<0, andg(¢) decreases
bounded by monotonically, which implies

g(0)< lim g(6)=0, V @c]l+=[. (A7)

. Vv BN
S[frl=BE+N| (1-BN)In—+1-In—-

2 6—1"
_(1_ _) In( 1 ﬂ” (A1) Equatipn(lO) thus follows immediately by reinjecting this
BN 2/ result into Eq.(A3).
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